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Note 

On Shooting Algorithms for Calculating 
Sturm-Liouville Eigenvalues 

In recent years several shooting algorithms have been proposed for estimating the 
eigenvalues and eigenfunctions of Sturm-Liouville problems, e.g., Adam and Traru 
[l], Dunker and Gordon [.5], Mikhailov and Vulchanov [8], and Paine [lo]. 
These have in common that they are based on the idea of approximating the co&- 
Cents in the differential equation by step functions for which the resulting problem 
can be solved “exactly.” Earlier discussions of this method, some containing 
mathematical theory can be found in Datzeff [4], Gordon 171, Canosa and Gomcs 
de Oliviera [3]. and Pruess [ 1 I]. This note is a response to the paper of Mikhailov 
and Vulchanov ES] and points out that their solution algorithm can suffer from 
some numerical problems in certain cases. Many of the cures have been suggested 
by prior researchers, but as yet, no one has written a code based on approximating 
the coefficients which incorporates all of these “fixes.” The significant advance in 
[S]. an implementation of an algorithm from Wittrick and Williams [i4], gives a 
cheap way of isolating the nth eigenvalue. In theory this allows a robust search for 
any eigenvalne desired. No prior algorithm contained this feature, a major step 
toward a robust code for the Sturm-Liouville problem. 

Before presenting some of the numerical problems which can arise, it is necessary 
to state the problem mathematically. Using notation similar to that in [S], we seek 
nonzero functions $(x, ,I), the eigenfunctions, and constants d, the eigenvalues. 
satisfying 

where ’ means d/d-x For simplicity, in this note we assume that (1) is regular, i.e., 
[a, b] is finite, the coefficients P(X), q(x), and T(X) are continuous on [a. b], P’(X) 
exists and is continuous on [a. 61, and p(s) and V(X) are positive on [CZ. b]. Under 
these assumptions it is known that there is an infinite set of eigenvalueeigen- 
function pairs (Ii;. tik) with &, bounded below and 1, + ;;c’ as k + cx). 

The basic idea is to replace this problem with another: 

(J?(x) $5’)’ + (/ii(x) - cjixj) 4 = 0 (21 
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with boundary conditions analogous to (lbt( lc). The new coefficients are chosen 
so that (2) is simpler to solve than (1) The standard examples have been piecewise 
constant or piecewise linear functions. As in [S], we concentrate on the step 
function case. Assume [a, b] has been partitioned into a =x0 < x, < . . < x,~ = b 
and let pk represent the value of d(x) in [x,, xk+ r] (qk and rk are similarly 
defined). A reasonable choice for this is p((sk + xk+ r)/2). Set h, = xk+ r - xkr 
rk = (Ark - qk)/pk, and ok = ,,m. Then on the kth interval 

where 

( sin ok t/sin 0 .h X k Tk > E 

F,(f)= sinh wk tjsinh w,lz, Tk< -E 

I 

t( 1 - Tk t2/6 + Tk t’/l20) 

hk( 1 - t,h;/6 + s;f/120) 
IskI dE 

(4) 

for some small s>O. The equation for small IrkI is not given in [S], but (4) is 
numerically safer. There are many ways of characterizing the eigenvalues which lead 
to stable algorithms, that in [S] is just one. However, since the main difficulty of 
[S] is the algorithm for computing the eigenfunctions we concentrate on it. The 
values $(.x,, II), k = 0 ,...) ~1, are nontrivial solutions of a homogeneous linear system 
derived by applying the boundary conditions (lb)--(lc) and the continuity 
conditions 

(PPN-y, 1) = m+m:, Jj k = 1, 2, . . . . n - 2. (5) 

From (3) the continuity equations become 

where we have denoted 4(x,, 2) by I,&,. The boundary condition (lb) suggests that 
the eigenfunction should be normalized by 

v%A A) = BoPia) and $‘(a, i) = CIO. (7) 

But from the representation (3) 

@ia, 2) = -F;(h,) $, + F;(O) $, 

so 

&.I = POP(n) and 
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which yields the following shooting method for the approximate eigenfuncrion 
values at the mesh points: 

for li = 1, 2, . . . . II - 1. This is just step 4 of the algorithm for eigenfunction com- 
putation in [&I; unfortunately, the recursion can be unstable when rk <O for many 
k. For one example of this, consider the radial Schrodinger equation with orse 
potential from [9]. In this case [a, b] = [0, IO], p(-~)= 1, I.(X)= 1. and 

where D = 188.4355, a = 0.711248, x, = 1.9975. and the boundary conditions are 
4(O) =$(h) = 0. It can be verified that 2, z - 178.798 + D = 9.637. But using (9) 
with a mesh chosen automatically to keep local errors less than lo-“ produces the 
set of values given in Table I (interpolated to a relatively uniform grid) under the 
heading shooting. Since #(6) =O, this is unacceptable. That such behavior is not 

surprising can be seen by examinin g the solution to the new problem (2) n&n 
tk < 0. The solution on the kth interval consists of two components exp( --.Y .J j s,l ) 
and exp( + ): ,/E). In order to choose 1 so that u(h) = 0 clearly would require the 
negative exponential to dominate; yet numerically, it is the positive exponential that 

will dominate, especially for large b, or large ~1. Mathematically speaking, the 
decaying exponential solution is unstable for the initial value problem. though it is 
line for the two-point boundary value problem. Any initial value (shooting) techni- 
que must fail in trying to compute the zeroth eigenfunction for the Morse potential 
(or any other problem for which T/, < 0 for many k). Another related problem which 
can occur (especially on VAX machines which have a reiatively small exponent 
range) is exponent overflow due to the growing exponential component. The value 
O(b) = 0.247E + 47 from Table I would overflow on many machines. Note that here 
and in Table I, the notation l.OOE + n means 1.00 x 10”. 

In an attempt to avoid this instability several authors (e.g.Y [3]) have suggested 
shooting from the ends into the middle. One computes one solution to the ODE 
(la) with initial condition (6), then another solution to (la) with final value #,p(b; 
and final slope -arr. These are scaled so that they match up at the midpoint 4~ 
some interior point automatically chosen by the integrator), say, with value one. 
One then iterates on 1 until the derivative at the midpoint is continuous. However? 
this only disguises the instability; it does not avoid it. This is shown by the second 
column of Table I; while the huge values generated by the regular shooting 
algorithm are avoided (because of the final scaling), the answers are just as 
worthless. 

Cures for the instability of the initial value problem are well known. Recall that 
the vector !P := ($,,, . . . . $,,) is a nontrivial solution to a homogeneous linear system 
(once the correct eigenvalue has been found). Currently, the recommended method. 
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TABLE I 

Zeroth Eigenfunction for the Morse Potential 

.t Shooting 

d&, by 
shooting to 
the middle 

Inverse iteration 

1 15 

0.00 0.000 
0.50 0.133&Y+ 7 
1.00 0.818E+ 10 
1.50 o.l33E+ 13 
2.00 0.594Ef 13 
3.00 0.270E+ 12 
4.00 0.500E + 14 
5.00 0.279Ef19 
6.00 0.584E + 24 
8.00 0.679E+35 

10.00 0.2478+47 

0.000 
O.l44E- 12 
0.339E- 8 
0.528E - 6 
0.2436-5 
0.730E-- 7 
0.212E--4 
1.000 
OS03E- 5 
0.279E- 16 
0.000 

0.000 

0.2416-2 
0.660E- 2 
0.233 
0.978 
0.054 
0.378E- 2 
0.313E-2 
0.254E-2 
0.191E-2 
0.000 

0.000 

0.262E- 7 
O.l55E-2 
0.221 
0.977 
0.050 
0.579E- 5 
0.695B- 10 
0.494E- 15 
0.389E - 26 
0.000 

for computing such quantities is inverse iteration (Golub and Van Loan [6]). The 
idea is to start with some initial approximation ylrol, e.g., random, then for 
j= 1, 2, . . . until convergence, solve the linear system with Ycj-rl as the right-hand 
side, the coefficient matrix that of the original homogeneous system, and the 
solution Yril. This has been used in Pruess [ 121 and Paine [ 101, among others. It 
is necessary to have a good approximation to the eigenvalue in order for this 
algorithm to produce good results. For the above example, the final columns of 
Table I headed inverse iteration give the results with A = - 178.800 after just one 
iteration and also at the 15th iteration, where the results have converged. Clearly, 
these numbers (even for the first iteration) are much more satisfactory than simple 
shooting. It is also a simple matter to avoid the potential overflows in the shooting 
algorithm for the eigenvalues by some kind of scaling, e.g., see Paine [lo] or 
Dunker and Gordon [S]. 

If shooting must be used, then it is important that a stable alternative be 
implemented, for example, the scaled Priifer transformation found in the code 
SLEIGN of Bailey, Shampine, and Gordon [2], or the NAG code D02KDF of 
John Pryce. In either of these, it is critical that the amplitude variable be correctly 
scaled to avoid the exponential instability. 

Another criticism of [IS] is that the step size selection algorithm is fairly primitive 
since it is based on uniform scaling up or down by some arbitrary constant. More 
efficient automatic procedures for monitoring local errors are available, e.g., [13]. 
While controlling local errors is straightforward, instability cannot be detected. For 
the above Morse example the entries in the shooting column did pass a local 
(relative) error test. A better idea, especially, for two-point boundary value 
problems, is to use a global error estimate. This is significantly more complicated to 
implement but should be much more reliable. 
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One of the chief advantages of the method of approximating the coefficients is 
that the asymptotic properties of the Sturm-Liouville eigenvalues and eigen- 
functions are preserved. This can be taken advantage of in the algorithm for finding c 
initial brackets for A, given by Mikhailov and Vulchanov. Their algorithm t,or a 
variant thereof) is needed for small values of k, but eventually the asymptotic 
formulas are sufficiently accurate to initialize the search, 

One final comment is that the step function approximation is only c(i7’) 

accurate. For high accuracy answers a higher order formula would be more 
efficient. Dunker and Gordon [S] use piecewise linear approximations which are 
C1(A4) accurate. Another alternative is to stay with the step functions but use 

ichardson’s h’-extrapolation to boost the accuracy. It is not immediately evident 
how the latter can be reliably incorporated into the bracketing process. 

In conclusion, the calculation of Sturm-Liouville eigenvalues using shooting 
methods seems very attractive; however, unless care is taken, there can be serious 
problems with the eigenfunction caiculation, 
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